Espirales

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <rdf:RDF>

    1. <skos:Concept rdf:about="http://vocab.getty.edu/aat/300163114">

      1. <skos:prefLabel xml:lang="en">spirals (geometric figures)</skos:prefLabel>

      2. <skos:prefLabel xml:lang="zh">螺線</skos:prefLabel>

      3. <skos:prefLabel xml:lang="nl">spiralen (meetkundige figuren)</skos:prefLabel>

      4. <skos:prefLabel xml:lang="es">espirales</skos:prefLabel>

      5. <skos:altLabel xml:lang="zh">luó xiàn</skos:altLabel>

      6. <skos:altLabel xml:lang="zh">luo xian</skos:altLabel>

      7. <skos:altLabel xml:lang="zh">lo hsien</skos:altLabel>

      8. <skos:altLabel xml:lang="en">spiral (geometric figure)</skos:altLabel>

      9. <skos:altLabel xml:lang="zh">蜷線</skos:altLabel>

      10. <skos:altLabel xml:lang="nl">spiraal (meetkundig figuur)</skos:altLabel>

      11. <skos:altLabel xml:lang="nl">helices (meetkundige figuren)</skos:altLabel>

      12. <skos:altLabel xml:lang="es">espiral</skos:altLabel>

      13. <skos:broader rdf:resource="http://museovirtualfelixcanada.digibis.com//concepts/75012" />
      14. <skos:note xml:lang="en">Plane curves that generally wind around a point while moving ever farther from the point. Many kinds of spiral are known, including the ancient Greek Archimedean spiral, described in On Spirals (ca. 225 BCE), and the logarithmic or equiangular spiral first described by René Descartes in 1638. The curves are observed in nature, and humans have used them in machines and in ornament, notably architecture, for example, the whorl in an Ionic capital. Prefer "scrolls (motifs)" or "scrollwork" for more complex forms.</skos:note>

      15. <skos:note xml:lang="es">Cuando se refiere a ornamento, usar para líneas simples enrrolladas y prefiera "voluta (motivo)" o "apliqué enrrollado" para formas más complejas.</skos:note>

      16. <skos:note xml:lang="nl">Bij de verwijzing naar ornamenten te gebruiken voor simpele gekronkelde lijnen. Gebruik 'krullen (motieven)' of 'rolwerk' voor de meer ingewikkelde vormen.</skos:note>

      17. <skos:note xml:lang="zh">在裝飾領域中指簡單的螺旋線;比較複雜的形式則稱「漩渦形飾 (紋飾)」或是「渦捲裝飾」。</skos:note>

      18. <skos:notation>300163114</skos:notation>

      19. <skos:inScheme rdf:resource="http://museovirtualfelixcanada.digibis.com//schemas/14" />

      </skos:Concept>

    </rdf:RDF>